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Abstract

Distributed networks comprising a large number of nodes, e.g.,

Wireless Sensor Networks, Personal Computers (PC’s), laptops, smart
phones, etc., which cooperate with each other in order to reach to a
common goal, constitute a promising technology for several applica-
tions. Typical examples include: distributed environmental monitor-
ing, acoustic source localization, power spectrum estimation, etc. So-
phisticated cooperation mechanisms can significantly benefit the learn-
ing process, through which the nodes achieve their common objective.

In this dissertation, the problem of adaptive learning in distributed
networks is studied, focusing on the task of distributed estimation. A
set of nodes sense information related to certain parameters and the
estimation of these parameters comprises the goal. Towards this direc-
tion, nodes exploit locally sensed measurements as well as information
springing from interactions with other nodes of the network. Through-
out this dissertation, the cooperation among the nodes follows the dif-
fusion optimization rationale and the developed algorithms belong to
the APSM algorithmic family.

First, robust APSM–based techniques are proposed. The goal is
to “harmonize” the spatial information, received from the neighbor-
hood, with the locally sensed one. This “harmonization” is achieved
by projecting the information of the neighborhood onto a convex set,
constructed via the locally sensed measurements. Next, the scenario,
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in which a subset of the node set is malfunctioning and produces mea-
surements heavily corrupted with noise, is considered. This problem
is attacked by employing the Huber cost function, which is resilient to
the presence of outliers. In the sequel, we study the issue of sparsity–
aware adaptive distributed learning. The nodes of the network seek
for an unknown sparse vector, which consists of a small number of
non–zero coefficients. Weighted ℓ1–norm constraints are embedded,
together with sparsity–promoting variable metric projections. Finally,
we propose algorithms, which lead to a reduction of the communica-
tion demands, by forcing the estimates to lie within lower dimensional
Krylov subspaces. The derived schemes serve a good trade-off between
complexity/bandwidth demands and achieved performance.

Subject Area: Adaptive Learning, Distributed Signal Process-
ing.
Keywords: Diffusion, Projections, APSM, hyperslabs.

1 Introduction

Distributed networks comprising a number of connected nodes, e.g., Personal
Computers (PC’s), laptops, smart phones, surveillance cameras and micro-
phones, wireless sensor networks etc., which exchange information in order
to reach a common goal, are envisioned to play a central role in many ap-
plications. Typical examples of emergent applications involving distributed
networks are: distributed environmental monitoring, acoustic source localiza-
tion, power spectrum estimation, target tracking, surveillance, traffic control,
patient monitoring and hospital surveillance, just to name a few [1,3,6,7,11].
All the previously mentioned applications share in common the fact that the
nodes are deployed over a geographic region providing spatial diversity to
the obtained measurements. Henceforth, the development of algorithms and
node cooperation mechanisms, which exploit the information diversity over
time and space, so that a common objective to be reached, becomes essential.

In this dissertation, the problem of distributed processing is studied with
a focus on the distributed/decentralized estimation task. A number of nodes,
which are spread over a geographic region, sense information related to cer-
tain parameters; the estimation of these parameters comprises our goal. The
main idea behind distributed processing is that the nodes exchange informa-
tion among them and make decisions/computations in a collaborative way
instead of working individually, using solely the information that is locally
sensed. It is by now well established, that the cooperation among the nodes
leads to better results compared to the case where they act as individual
learners, see for example [5, 10, 13]. The need to develop node cooperation
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mechanisms is increased due to the presence of noise in the majority of ap-
plications. More specifically, the measurements observed at each node are
corrupted by noise, and this fact adds further uncertainty on the obtained es-
timates of the unknown target parameters. This uncertainty can be reduced
via the cooperation of the nodes.

In decentralized networks, the following issues have to be taken into con-
sideration:

• Performance: A performance close to the optimal, that is the one asso-
ciated with the centralized networks, which use all the available data,
has to be achieved. In other words, despite the fact that direct commu-
nication among some of the nodes cannot be established, sophisticated
cooperation mechanisms have to be developed, in order to “push” the
performance to be as close as possible to the ideal scenario.

• Robustness to possible failures: As it has been already stated, a major
drawback of the centralized topology is that if the FC fails then the
network collapses. Decentralized networks have to be constructed so
as to be robust against possible node failures.

• Bandwidth and complexity constraints: The amount of transmitted in-
formation has to be as small as possible, in order to keep the bandwidth
low. Furthermore, since in decentralized networks a central processing
unit with powerful computational capabilities is not present and usu-
ally cheap processing units comprise the nodes, low-complexity schemes
have to be developed.

• Adaptivity: In many applications, such as, source localization, spec-
trum sensing, etc, the nodes of the network are tasked to estimate non–
stationary parameters, i.e., parameters which vary with time. Batch
estimation algorithms, which use all the available training data simulta-
neously, cannot attack such problems. To this end, adaptive techniques
have to be developed, where the data are observed sequentially, one per
(discrete) time instance and operate in an online fashion for updating
and improving the estimates.

The main objective of this dissertation is to develop algorithms in the
context of adaptive estimation in distributed networks. The diffusion op-
timization rationale is adopted and the proposed algorithms belong to the
Adaptive Projected Subgradient Method (APSM) algorithmic family.
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2 Adaptive Robust Algorithms for Distributed

Learning

As a first step, distributed algorithms, which follow the diffusion rationale
and belong to the family of the Adaptive Projected Subgradient Method, are
developed. The proposed algorithms adopt a novel combine–project–adapt
cooperation protocol. The intermediate extra projection step of this pro-
tocol “harmonizes” the local information, which comprises the input/output
measurements, with the information coming from the neighborhood, i.e., the
estimates obtained from the neighboring nodes. This is achieved by project-
ing the vector, occurring by combining the estimates of the neighbourhood,
to a convex set, namely a hyperslab, which is constructed by exploiting lo-
cally sensed information. The steps of the algorithm can be summarised as
follows:

1. Combination Step: The estimates from the nodes that belong to the
neighbourhood are received and convexly combined with respect to the
combination weights.

2. Projection Step: The resulting aggregate is first projected onto a
properly constructed hyperslab.

3. Adaptation Step: The adaptation step is performed.

The following model is adopted. A network of N nodes is considered and
each node, k, at time n, has access to the measurements dk,n ∈ R, uk,n ∈ R

m

generated by the linear system:

dk,n = wT
∗ uk,n + vk,n, (1)

where vk,n is an additive noise process of zero mean and variance σ2
k. The

goal is the estimation of the m× 1 vector w∗.
As we have already mentioned, an APSM–based scheme, which employs

projections onto hyperslabs, is developed. The scheme is brought in a dis-
tributed fashion by following the diffusion rationale. Moreover, here an extra
step is added, that follows the combination stage and precedes the adapta-
tion one. More specifically, the result of the combination step is projected
onto the hyperslab S ′

k,n, which is defined as

S ′
k,n = {w ∈ R

m : |dk,n −w
Tuk,n| ≤ ǫ′k},

where ǫ′k > ǫk and ǫk is the user defined parameter associated with the
hyperslabs, that will be used in the adaptation step at node k, i.e.,

Sk,n = {w ∈ R
m : |dk,n −w

Tuk,n| ≤ ǫk}.
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The algorithm comprises the following steps:

1. Combination Step: The estimates from the nodes that belong to Nk

are received and convexly combined with respect to the combination
weights ak,l.

2. Projection Step: The resulting aggregate is first projected onto the
hyperslab S ′

k,n
1.

3. Adaptation Step: The adaptation step is performed.

φk,n =
∑

l∈Nk

ak,lwl,n, (2)

zk,n = PS′

k,n

(

φk,n

)

, (3)

wk,n+1 = zk,n + µk,n

(

∑

j∈Jn

ωk,jPSk,j
(zk,n)− zk,n

)

, (4)

where PS′

k,n
and PSk,n

are the projection operators onto the respective hyper-

slabs,
∑

j∈Jn
ωk,j = 1 and Jn := max{0, n− q + 1}, n. As it was experimen-

tally verified, the proposed scheme exhibits an enhanced performance, both
in terms of convergence speed as well as steady state error floor, compared
to other state of the art algorithms, of similar complexity. Finally, it was
proved that the algorithm enjoys a number of nice convergence properties
such as monotonicity, strong convergence to a point and consensus.

3 Introducing Robustness to Cope with a Fail-

ure of Nodes

Consider a scenario, in which some of the nodes are damaged and the asso-
ciated observations are very noisy. More specifically, it is assumed that that
the noise is additive and white, albeit the standard deviation of the “dam-
aged” nodes becomes larger, compared to the one of the “healthy” nodes.
In such cases, the use of loss functions, suggested in the framework of ro-
bust statistics, are more appropriate to cope with outliers. A popular cost
function of this family is the Huber cost function, e.g., [8, 12].

In the current study we employ a slightly modified version of the Huber
cost function, compared to the classical one. The difference is that in our

1The projection of a point onto a hyperslab is provided in Chapter 3.
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context a 0–th level set is introduced, i.e., a set of points in which the function
scores a zero loss. Our goal is to find points, which lie in the previously
mentioned 0–th level set. The geometry of the Huber function is illustrated
in Fig. In contrast to the hyperslab case, the projection onto the 0–th level
set of the Huber cost function, does not admit a closed form. For this reason,
projections onto the halfspace, associated to the subgradient of the Huber
loss function, take place. We can also include the extra projection step,
described in the previous section, by introducing a modified version of the
Huber cost function and following a similar rationale as in the hyperslab
case. However, instead of projecting the result of the combination step onto
an external hyberslab, we project it onto a halfspace that is generated by
a properly modified cost function. The proposed algorithm comprises the
following steps:

φk,n =
∑

l∈Nk

ak,lwl,n, (5)

zk,n = P
H

′
−

k,n

(

φk,n

)

, , (6)

wk,n+1 = zk,n + µk,n

(

∑

j∈Jn

ωk,jPH−

k,j
(zk,n)− zk,n

)

, (7)

where PH−

k,j
stands for the projection onto the halfspace associated to the Hu-

ber loss function and P
H

′
−

k,j

is the previously described extra projection step.

Under some mild assumptions, the developed algorithm enjoys monotonic-
ity, asymptotic optimality, asymptotic consensus and strong convergence to
a point that lies in the consensus subspace. Finally, numerical examples ver-
ified that the proposed scheme has an enhanced performance, compared to
the other methodologies, in a network with malfunctioning nodes.

4 Sparsity–Aware Adaptive Distributed Learn-

ing

As a next step, an APSM–based sparsity–promoting adaptive algorithm for
distributed learning in ad–hoc networks is developed. At each time instance
and at each node of the network, a hyperslab is constructed based on the re-
ceived measurements; this defines the region in which the solution is searched
for. Sparsity encouraging variable metric projections onto these sets have
been adopted. In addition, sparsity is also imposed by employing variable
metric projections onto weighted ℓ1 balls. A combine adapt cooperation
strategy is followed.
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Let us introduce, here, the sparsity promoting variable metric projection,
onto the respective hyperslabs, with respect to the matrixGn, defined as [14]:

∀w ∈ R
m, P

(Gn)
Sn

(w) := w + βnG
−1
n un, (8)

where

βn =



























dn − u
T
nw + ǫ

‖un‖2G−1
n

, if dn − uT
nw < −ǫ,

0, if |dn − u
T
nw| ≤ ǫ,

dn − uT
nw − ǫ

‖un‖2G−1
n

, if dn − uT
nw > ǫ,

and ‖un‖2G−1
n

denotes the weighted norm, with definition ‖un‖2G−1
n

:= uT
nG

−1
n un

(see Appendix C). Note that ifGn = Im, then (8) is the Euclidean projection
onto a hyperslab. The positive definite diagonal matrix G−1

n is constructed
following similar philosophy as in [2, 15]. The i-th coefficient of its diagonal

equals to g−1
i,n = 1−α

m
+ α

|w
(n)
i |

‖wn‖1
, where α ∈ [0, 1) is a parameter, that deter-

mines the extend to which the sparsity level of the unknown vector will be
taken into consideration, and w

(n)
i denotes the i-th component of wn. In

order to grasp the reasoning of the variable metric projections, consider the
ideal situation, in which G−1

n is generated by the unknown vector w∗. It is
easy to verify that g−1

i,n > g−1
i′,n, if i ∈ supp(w∗), and i′ /∈ supp(w∗), where

supp(·) stands for the support set of a vector, i.e., the set of the non–zero
coefficients. Hence, employing the variable metric projection, the amplitude
of each coefficient of the vector used to construct G−1

n determines the weight
that will be assigned to the corresponding coefficient of the second term of
the right hand side in (8). That is, components with smaller magnitude
are multiplied with small coefficients of G−1

n . Loosely speaking, the variable
metric projections accelerate the convergence speed when tracking a sparse
vector, since by assigning different weights pushes the coefficients of the esti-
mates with small amplitude to diminish faster. The geometric implication of
it is that the projection is made to “lean” towards the direction of the more
significant components of the currently available estimate.

In the algorithm which is presented here, we go one step further, as
far as sparsity is concerned. In a second stage, additional sparsity-related
constraints, which are built around the weighted ℓ1 ball, are employed, [4].
A sparsity promoting adaptive scheme, based on set-theoretic estimation
arguments, in which the constraints are weighted ℓ1 balls, was presented
in [9]. Given a vector of weights ψn = [h

(n)
1 , . . . , h

(n)
m ]T , where h

(n)
i >

0, ∀i = 1, . . . , m, and a positive radius, δ, the weighted ℓ1 ball is defined as:
Bℓ1 [ψn, δ] := {w ∈ R

m :
∑m

i=1 h
(n)
i |wi| ≤ δ}. The projection onto Bℓ1[ψn, δ],
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Bℓ1
[hn, δ]

Bℓ1
[1m, δ]

w2

w1

Figure 1: Illustration of a weighted ℓ1 ball (solid line magenta) and an un-
weighted ℓ1 ball (dashed line blue).

is given in [9, Theorem 1], and the geometry of these sets is illustrated in
Fig. 1.

The steps of the algorithm are summarized in the sequel:

wk,n+1 = P
(Gn)
Bℓ1

[ψn,δ]

(

φk,n + µk,n

(

∑

j∈J

ωk,jP
(Gn)
Sk,j

(φk,n)− φk,n

))

, (9)

The theoretical properties of the algorithm are studied and it is shown
that under some mild assumptions, the scheme enjoys monotonicity, asymp-
totic optimality and strong convergence to a point that lies in the consensus
subspace. Finally, numerical examples verify the enhanced performance ob-
tained by the proposed scheme compared to other algorithms, which have
been developed in the context of sparsity–aware adaptive learning.

5 Dimensionality Reduction in Distributed Adap-

tive Learning via Krylov Subspaces

In this section, the problem of dimensionality reduction in adaptive dis-
tributed learning is studied. As in the previous sections, the algorithm, to
be presented here, is based on the APSM algorithmic family. At each time
instant and at each node of the network, a hyperslab is constructed based on
the received measurements and this defines the region in which the solution
is searched for. Moreover, in order to reduce the number of transmitted co-
efficients, which is dictated by the dimension of the unknown vector, we seek
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m
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φk,n = T̂nφ̃k,n

PKn∩Sk,n
(φk,n)

Kn ∩ Sk,n
Sk,n

w∗

w
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(a)

φ̃k,n

PS̃k,n
(φ̃k,n)
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D

(b)

Figure 2: (a) Geometrical illustration of the algorithm for q = 1. The aggre-
gate φk,n, which belongs in the subspace, is projected onto the intersection
of the subspace and the hyperslab, generated by the measurement data. (b)
The algorithmic scheme in the reduced dimension space, i.e., RD.

for possible solutions in a subspace of lower dimensionality; the technique
will be developed around the Krylov subspace rationale. Our goal is to find
a point that belongs to the intersection of this infinite number of hyperslabs
and the respective Krylov subspaces. This is achieved via a sequence of pro-
jections onto the property sets as well as the Krylov subspaces. The proposed
schemes are brought in a decentralized form by adopting the combine-adapt
cooperation strategy among the nodes.

The steps of the algorithm can be encoded in the following formula:

w̃k,n+1 = φ̃k,n + µ̃k,n

(

∑

j∈J

ωk,jPS̃k,j
(φ̃k,n)− φ̃k,n

)

, (10)

where the vectors tildewk,n+1, φ̃k,n+1 belong to the reduced dimension space
and the reduced dimension hyperslab is given by: S̃k,n := {w̃ ∈ R

D : |dk,n −

uT
k,nT̂nw̃| ≤ ǫk, } where T̂n is a matrix, the columns of which, span the Krylov

subspace. The geometrical interpretation of the algorithm is illustrated in
Fig. 2

As in the previously derived schemes, the theoretical properties of the
algorithm are studied and it is shown that the scheme enjoys monotonic-
ity, asymptotic optimality and strong convergence to a point that lies in
the intersection of the consensus subspace with the Krylov Subspace. Fi-
nally, numerical examples verify that the proposed scheme provides a good
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trade-off between the number of transmitted coefficients and the respective
performance.
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